Prostate cancer is one of the primary causes of death around the world. As an important drug, flutamide has been used in the clinical diagnosis of prostate cancer. However, the over dosage and improper discharge of flutamide could affect the living organism. Thus, it necessary to develop the sensor for detection of flutamide with highly sensitivity. In this paper, we report the synthesis of lanthanum cobaltite decorated halloysite nanotube (LCO/HNT) nanocomposite prepared by a facile method and evaluated for selective reduction of flutamide. The as-prepared LCO/HNT nanocomposite shows the best catalytic performance towards detection of flutamide, when compared to other bare and modified electrodes. The good electrochemical performance of the LCO/HNT nanocomposite modified electrode is ascribed to abundant active sites, large specific surface area and their synergetic effects. Furthermore, the LCO/HNT modified electrode exhibits low detection limit (0.002 μM), wide working range (0.009-145 μM) and excellent selectivity with remarkable stability. Meaningfully, the developed electrochemical sensor was applied in real environmental samples with an acceptable recovery range.
Keywords: Binary metal oxides; Flutamide; Halloysite nanotubes; Lanthanum cobaltite; Prostate cancer.
Copyright © 2019 Elsevier Inc. All rights reserved.