Background: Heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 is an important RNA-binding protein that affects the RNA processing, splicing, transport and stability of many genes. hnRNPA2/B1 is expressed during proliferation and metastasis of various cancer types and promotes such processes. However, the precise role and mechanism of hnRNPA2/B1 in breast cancer remain unclear.
Methods: The association of hnRNPA2/B1 with breast cancer metastasis was assessed using tissue chips, mouse models and publicly available data. The role and mechanism of hnRNPA2/B1 in breast cancer metastasis were studied in cell lines and mouse models.
Findings: In contrast to other cancer research findings, hnRNPA2/B1 expression was negatively correlated with breast cancer metastasis. hnRNPA2/B1 inhibited MDA-MB-231 triple-negative breast cancer (TNBC) cell metastasis in vitro and in vivo. hnRNPA2/B1 knockout activated ERK-MAPK/Twist and GR-beta/TCF4 pathways but inhibited STAT3 and WNT/TCF4 signalling pathways. Profilin 2 (PFN2) promoted breast cancer cell migration and invasion, whereas hnRNPA2/B1 bound directly to the UAGGG locus in the 3'-untranslated region of PFN2 mRNA and reduced the stability of PFN2 mRNA.
Interpretation: Our data supported the role of hnRNPA2/B1 in tumour metastasis risk and survival prediction in patients with breast cancer. The inhibitory role of hnRNPA2/B1 in metastasis was a balance of downstream multiple genes and signalling pathways. PFN2 downregulation by hnRNPA2/B1 might partly explain the inhibitory mechanism of hnRNPA2/B1 in breast cancer metastasis. Therefore, hnRNPA2/B1 might be used as a new prognostic biomarker and valuable molecular target for breast cancer treatments.
Keywords: Breast cancer metastasis; Epithelial–mesenchymal transition; Heterogeneous nuclear ribonucleoprotein A2/B1; Profilin 2.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.