Objective: There is an unmet need to improve immediate burn care, particularly when definitive treatment is delayed. Therefore, the purpose of this project was to formulate a hydrogel that contains very high concentrations of antibiotics and validate its use together with a platform wound device (PWD) for the immediate care of burns. Approach: The hydrogel properties were optimized by using a rheometer, differential scanning calorimetry, and liquid chromatography-mass spectrometry and were tested in an infected porcine burn model. Immediately, after burn creation, the burns were infected with different bacteria. Subsequently, the burns infected with Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii were covered with the PWD and treated with a single dose of hydrogel containing 1000 × minimum inhibitory concentration of vancomycin, gentamicin, and minocycline, respectively. On day 7 or 45, the animals were euthanized, and the burns were harvested for histology and quantitative bacteriology. Results: 0.625% was the best alginate concentration for the hydrogel in terms of viscosity, stability, and drug release. The porcine studies demonstrated that vancomycin-, gentamicin-, and minocycline-treated tissues contained significantly less bacteria and reduced depth of tissue necrosis in comparison to controls. Innovation: The PWD represents a platform technology that begins at the point of the first treatment by protecting the wound and allowing administration of topical therapeutics. The device can be adapted to enclose any size burn over any contour of the body. Conclusion: Antibiotics can be delivered safely in very high concentrations in a hydrogel using the PWD, and burn infections can be treated successfully with this method.
Keywords: alginate; burns; hydrogel; platform wound device; topical treatment; wound healing.
Copyright 2020, Mary Ann Liebert, Inc., publishers.