Background: Typhus group rickettsiosis (TGR), which is a neglected vector-borne infectious disease, including epidemic typhus and endemic typhus. We explored the lag effects and nonlinear association between meteorological factors and TGR incidence in Xishuangbanna Dai autonomous prefecture from 2005 to 2017, China.
Methods: A Poisson regression with a distributed lag nonlinear model (DLNM) was utilized to analyze TGR cases data and the contemporaneous meteorological data.
Results: A J-shaped nonlinear association between weekly mean temperature and TGR incidence was found. The cumulative exposure to weekly mean temperature indicated that the RR increased with the increment of temperature. Taking the median value as the reference, lower temperatures could decrease the risk of TGR incidence, while higher temperatures could increase the risk of TGR incidence and last for 21 weeks. We also found a reversed U-shaped nonlinear association between weekly mean precipitation and TGR incidence. Precipitation between 5 mm and 13 mm could increase the risk of TGR incidence. Taking the median value as the reference, no precipitation and lower precipitation could decrease the risk of TGR incidence, while higher precipitation could increase the risk of TGR incidence and last for 18 weeks.
Conclusions: The prevention and control measures of TGR should be implemented according to climatic conditions by the local government and health departments in order to improve the efficiency.
Keywords: China; Climate; Distributed lag non-linear models; Typhus group rickettsiosis.