Postoperative cognitive dysfunction (POCD) is a common neurological disease affecting the elderly patients after surgery. Unfortunately, no effective treatment for this disease has been discovered. Edaravone, a clinical-used free radical scavenger, at 3 mg/kg has been reported to prevent neuroinflammation induced by the combination of surgery and lipopolysaccharide in adult rodents. However, we found that edaravone at such low concentration could not inhibit POCD in aged mice. Instead, edaravone at 33.2 mg/kg significantly prevented recognition and spatial cognitive dysfunctions in 14 month aged mice after abdominal surgery under general anesthesia with isoflurane. Furthermore, edaravone significantly prevented the increase of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) induced by abdominal surgery in aged mice. Edaravone could also decrease glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule-1 (Iba-1) positive areas in the hippocampal regions of surgery mice, suggesting that edaravone might inhibit surgery-induced over-activation of microglia and astrocytes. Moreover, edaravone substantially increased the expression of PSD-95 and pSer9-glycogen synthase kinase-3β (pSer9-GSK3β) as demonstrated by Western blotting assay. Furthermore, the activity of acetylcholinesterase (AChE) is decreased in the mice in edaravone group. All these results suggested that edaravone at high concentrations could inhibit surgery-induced cognitive impairments in aged animals, possibly via the attenuation of neuroinflammation, the increase of synaptic proteins, and the elevation of cholinergic transmission, providing a further support that edaravone might be developed as a treatment of POCD.
Keywords: Edaravone; GFAP; GSK3β; Iba-1; PSD-95; Post-operative cognitive dysfunction.