Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride

Science. 2020 Jan 31;367(6477):555-559. doi: 10.1126/science.aaz6149. Epub 2020 Jan 9.

Abstract

Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched 10B or 11B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.