A Co-MOF with a (4,4)-connected binodal two-dimensional topology: synthesis, structure and photocatalytic properties

Acta Crystallogr C Struct Chem. 2020 Jan 1;76(Pt 1):23-29. doi: 10.1107/S2053229619016097. Epub 2019 Dec 6.

Abstract

The Co-MOF poly[[diaqua{μ4-1,1,2,2-tetrakis[4-(1H-1,2,4-triazol-1-yl)phenyl]ethylene-κ4N:N':N'':N'''}cobalt(II)] benzene-1,4-dicarboxylic acid benzene-1,4-dicarboxylate], {[Co(C34H24N12)(H2O)2](C8H4O4)·C8H6O4}n or {[Co(ttpe)(H2O)2](bdc)·(1,4-H2bdc)}n, (I), was synthesized by the hydrothermal method using 1,1,2,2-tetrakis[4-(1H-1,2,4-triazol-1-yl)phenyl]ethylene (ttpe), benzene-1,4-dicarboxylic acid (1,4-H2bdc) and Co(NO3)2·6H2O, and characterized by single-crystal X-ray diffraction, IR spectroscopy, powder X-ray diffraction (PXRD), luminescence, optical band gap and valence band X-ray photoelectron spectroscopy (VB XPS). Co-MOF (I) shows a (4,4)-connected binodal two-dimensional topology with a point symbol of {44·62}{44·62}. The two-dimensional networks capture free neutral 1,4-H2bdc molecules and bdc2- anions, and construct a three-dimensional supramolecular architecture via hydrogen-bond interactions. MOF (I) is a good photocatalyst for the degradation of methylene blue and rhodamine B under visible-light irradiation and can be reused at least five times.

Keywords: (4,4)-connected two-dimensional topology; MOF; cobalt(II); crystal structure; photocatalytic degradation; photocatalytic mechanism.

Publication types

  • Research Support, Non-U.S. Gov't