The CALIPSO Version 4 Automated Aerosol Classification and Lidar Ratio Selection Algorithm

Atmos Meas Tech. 2018;11(11):6107-6135. doi: 10.5194/amt-11-6107-2018.

Abstract

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) version 4.10 (V4) level 2 aerosol data products, released in November 2016, include substantial improvements to the aerosol subtyping and lidar ratio selection algorithms. These improvements are described along with resulting changes in aerosol optical depth (AOD). The most fundamental change in V4 level 2 aerosol products is a new algorithm to identify aerosol subtypes in the stratosphere. Four aerosol subtypes are introduced for the stratospheric aerosols: polar stratospheric aerosol (PSA), volcanic ash, sulfate/other, and smoke. The tropospheric aerosol subtyping algorithm was also improved by adding the following enhancements: (1) all aerosol subtypes are now allowed over polar regions, whereas the version 3 (V3) algorithm allowed only clean continental and polluted continental aerosols; (2) a new "dusty marine" aerosol subtype is introduced, representing mixtures of dust and marine aerosols near the ocean surface; and (3) the "polluted continental" and "smoke" subtypes have been renamed "polluted continental/smoke" and "elevated smoke", respectively. V4 also revises the lidar ratios for clean marine, dust, clean continental, and elevated smoke subtypes. As a consequence of the V4 updates, the mean 532 nm AOD retrieved by CALIOP has increased by 0.044 (0.036) or 52 % (40 %) for nighttime (daytime). Lidar ratio revisions are the most influential factor for AOD changes from V3 to V4, especially for cloud-free skies. Preliminary validation studies show that the AOD discrepancies between CALIOP and AERONET/MODIS (ocean) are reduced in V4 compared to V3.