Artificial intelligence demonstrated its value for automated contouring of organs at risk and target volumes as well as for auto-planning of radiation dose distributions in terms of saving time, increasing consistency, and improving dose-volumes parameters. Future developments include incorporating dose/outcome data to optimise dose distributions with optimal coverage of the high-risk areas, while at the same time limiting doses to low-risk areas. An infinite gradient of volumes and doses to deliver spatially-adjusted radiation can be generated, allowing to avoid unnecessary radiation to organs at risk. Therefore, data about patient-, tumour-, and treatment-related factors have to be combined with dose distributions and outcome-containing databases.
Keywords: Artificial intelligence; Auto-segmentation; Breast cancer; Deep learning; Neural network; Radiation therapy.
Copyright © 2019. Published by Elsevier Ltd.