Background: To evaluate the diagnostic value of 18F-FDG PET/CT in distinguishing benign versus malignant cardiac tumors as well as to assess its prognostic value.
Methods: We analyzed 38 patients with cardiac tumors who underwent 18F-FDG PET/CT and followed for median 8.5 ± 12.5 months. SUVmax and TBRmax (maximum tumor-to-background ratio) by receiver-operating characteristic (ROC) curve analysis were used to obtain threshold for the diagnosis of malignancy as defined by histology (n = 38). Survival was assessed and correlated with the dignity of the lesions and PET parameters.
Results: Optimal cut-off values indicating malignancy were as follows: SUVmax = 3.44, with 100% sensitivity and 92.9% specificity, and TBRmax = 1.55, with 95.8% sensitivity and 92.9% specificity. A significant difference of 18F-FDG uptake was observed between primary benign (n = 14, SUVmax = 2.35 ± 1.31, TBRmax = 1.05 ± 0.50) compared to primary malignant cardiac tumors (n = 11, SUVmax = 8.90 ± 4.23, TBRmax = 3.82 ± 1.44) as well as cardiac metastases and lymphoma (n = 13, SUVmax = 14.37 ± 8.05, TBRmax = 6.19 ± 3.38) (all P < .001). Survival rate was significantly lower in patients with malignant as compared to benign cardiac tumors (P < .05). Regression analysis revealed that the lesion dignity determined by the cut-off value of SUVmax was an independent predictor for death in patients with cardiac tumors (P < .05).
Conclusion: 18F-FDG uptake in cardiac tumors can differentiate between benign and malignant cardiac tumors and predicts survival.
Keywords: 18F-FDG; Cardiac tumor; PET/CT; cardiac metastasis; diagnosis; prognosis.
© 2020. American Society of Nuclear Cardiology.