Mass spectrometry by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) was used to identify and differentiate the pattern of susceptibility of clinical isolates of Candida parapsilosis complex. 17 C. parapsilosis sensu stricto, 2 C. orthopsilosis, and 1 C. metapsilosis strains were obtained from blood cultures, and three different inocula (103, 105, and 107 CFU/mL) were evaluated against three echinocandins at concentrations ranging from 0.03 to 16 µg/mL after incubation of 1 h, 2 h, and 3 h. Drug-free control was used. The spectra obtained at these concentrations were applied to generate composite correlation index (CCI) matrices for each yeast individually. After cross correlations and autocorrelations of each spectra with null (zero) and maximal (16) concentrations, the CCI was used as separation parameter among spectra. Incubation time and inoculum were critical factors to reach higher precision and reliability of this trial. With an incubation time of 3 h and inoculum of 107 CFU/mL, it was possible to determine the breakpoint of the clinical yeasts by MALDI-TOF that presented high agreement with the clinical laboratory standard institute (CLSI) reference method. Herein, we show that mass spectrometry using the MALDI-TOF technique is powerful when it exploits antifungal susceptibility testing assays.
Keywords: candidemia; mass spectrometry; resistance; susceptibility testing.