A sensor-mediated strategy was applied to a laboratory-scale granular sludge reactor (GSR) to demonstrate that energy-efficient inorganic nitrogen removal is possible with a dilute mainstream wastewater. The GSR was fed a dilute wastewater designed to simulate an A-stage mainstream anaerobic treatment process. DO, pH, and ammonia/nitrate sensors measured water quality as part of a real-time control strategy that resulted in low-energy nitrogen removal. At a low COD (0.2 kg m-3 day-1 ) and ammonia (0.1 kg-N m-3 day-1 ) load, the average degree of ammonia oxidation was 86.2 ± 3.2% and total inorganic nitrogen removal was 56.7 ± 2.9% over the entire reactor operation. Aeration was controlled using a DO setpoint, with and without residual ammonia control. Under both strategies, maintaining a low bulk oxygen level (0.5 mg/L) and alternating aerobic/anoxic cycles resulted in a higher level of nitrite accumulation and supported shortcut inorganic nitrogen removal by suppressing nitrite oxidizing bacteria. Furthermore, coupling a DO setpoint aeration strategy with residual ammonia control resulted in more stable nitritation and improved aeration efficiency. The results show that sensor-mediated controls, especially coupled with a DO setpoint and residual ammonia controls, are beneficial for maintaining stable aerobic granular sludge. PRACTITIONER POINTS: Tight sensor-mediated aeration control is need for better PN/A. Low DO intermittent aeration with minimum ammonium residual results in a stable N removal. Low DO aeration results in a stable NOB suppression. Using sensor-mediated aeration control in a granular sludge reactor reduces aeration cost.
Keywords: NOB suppression; aeration control; mainstream N removal; partial nitritation/anammox.
© 2020 The Authors. Water Environment Research published by Wiley Periodicals, Inc. on behalf of Water Environment Federation.