Glioma is the most common type of primary brain tumor, and it has a high mortality rate. Currently, there are only a few therapeutic approaches for gliomas, and their effects are unsatisfactory. Therefore, uncovering the pathogenesis and exploring more therapeutic strategies for the treatment of gliomas are urgently needed to overcome the ongoing challenges. Cellular redox imbalance has been shown to be associated with the initiation and progression of gliomas. Among reactive oxygen species (ROS), hydrogen peroxide (H2O2) is considered the most suitable for redox signaling and is a potential candidate as a key molecule that determines the fate of cancer cells. In this review, we discuss the potential cellular and molecular roles of H2O2 in gliomagenesis and explore the potential implications of H2O2 in radiotherapy and chemotherapy and in the ongoing challenges of current glioma treatment. Moreover, we evaluate H2O2 as a potential redox sensor and potential driver molecule of nanocatalytic therapeutic strategies for glioma treatment.
Keywords: Glioblastoma; Glioma; Hydrogen peroxide (H2O2); Reactive oxygen species (ROS); Redox therapy.