A Special Amino-Acid Formula Tailored to Boosting Cell Respiration Prevents Mitochondrial Dysfunction and Oxidative Stress Caused by Doxorubicin in Mouse Cardiomyocytes

Nutrients. 2020 Jan 21;12(2):282. doi: 10.3390/nu12020282.

Abstract

Anthracycline anticancer drugs, such as doxorubicin (DOX), can induce cardiotoxicity supposed to be related to mitochondrial damage. We have recently demonstrated that a branched-chain amino acid (BCAA)-enriched mixture (BCAAem), supplemented with drinking water to middle-aged mice, was able to promote mitochondrial biogenesis in cardiac and skeletal muscle. To maximally favor and increase oxidative metabolism and mitochondrial function, here we tested a new original formula, composed of essential amino acids, tricarboxylic acid cycle precursors and co-factors (named 5), in HL-1 cardiomyocytes and mice treated with DOX. We measured mitochondrial biogenesis, oxidative stress, and BCAA catabolic pathway. Moreover, the molecular relevance of endothelial nitric oxide synthase (eNOS) and mechanistic/mammalian target of rapamycin complex 1 (mTORC1) was studied in both cardiac tissue and HL-1 cardiomyocytes. Finally, the role of Krüppel-like factor 15 (KLF15), a critical transcriptional regulator of BCAA oxidation and eNOS-mTORC1 signal, was investigated. Our results demonstrate that the 5 mixture prevents the DOX-dependent mitochondrial damage and oxidative stress better than the previous BCAAem, implying a KLF15/eNOS/mTORC1 signaling axis. These results could be relevant for the prevention of cardiotoxicity in the DOX-treated patients.

Keywords: Krüppel-like factor 15; branched-chain amino acids; cardiomyocytes; doxorubicin; endothelial nitric oxide synthase; mechanistic/mammalian target of rapamycin; mitochondria; oxidative stress; peroxisome proliferator-activated receptor coactivator 1; tricarboxylic acid cycle.

MeSH terms

  • Amino Acids / administration & dosage*
  • Amino Acids, Branched-Chain / metabolism
  • Animals
  • Cardiotoxicity / prevention & control*
  • Cell Respiration / drug effects*
  • Dietary Supplements
  • Doxorubicin / adverse effects
  • Food, Formulated*
  • Mice
  • Mitochondria / drug effects*
  • Myocytes, Cardiac / drug effects
  • Organelle Biogenesis
  • Oxidative Stress / drug effects*
  • Signal Transduction

Substances

  • Amino Acids
  • Amino Acids, Branched-Chain
  • Doxorubicin