Six parabens and their four metabolites were measured in paired maternal serum (MS) and cord serum (CS) samples collected from 95 pregnant women to elucidate placental transfer of this class of compounds. Matched maternal urine (MU) and amniotic fluid (AF) collected from 13 of 95 pregnant women were also analyzed to examine partition of these chemicals between maternal and fetal tissues. The placental transfer rates (PTRs; concentration ratio of parabens between CS and MS) of methyl- (MeP), ethyl- (EtP), propyl-parabens (PrP) were 0.81, 0.63, and 0.60, respectively. Furthermore, the PTRs of OH-MeP (0.93) and OH-EtP (1.8) were higher than those of their corresponding parent parabens, which suggested that hydroxylation increased placental transfer rates of parabens. Structure-dependent placental transfer mechanisms were observed. A significant negative correlation between molecular weights (or log Kow) of MeP, EtP, PrP, and p-hydroxy benzoic acid (4-HB) and PTRs suggested passive diffusion as a mechanism of placental transfer of these chemicals. Nevertheless, other hydroxylated metabolites (OH-EtP, OH-MeP, and 3,4-dihydroxy benzoic acid (3,4-DHB)) showed a positive correlation between molecular weight (or log Kow) and PTRs, which suggested that the placental transfer is mediated by protein binding of these metabolites. The MU to MS concentration ratios of MeP (MU/MSMeP) and PrP (MU/MSPrP) were 71 and 81, respectively, and MU/MSMeP was two orders of magnitude higher than that found for the metabolite (MU/MSOH-MeP: 0.35), suggesting that hydroxylation metabolite reduced urinary elimination of parabens. To our knowledge, this is the first time to report the occurrence and distribution of parabens and their metabolites in paired maternal-fetal serum, urine, and AF samples in China. Our results provide novel information on placental transfer of parabens and their metabolites.
Keywords: Maternal-fetal samples; Metabolites; Parabens; Placental transfer.
Copyright © 2020 Elsevier Inc. All rights reserved.