2-Bromo-1,3-butadienes are demonstrated to be effective substrates for tandem Diels-Alder/transition metal cross-coupling reaction sequences. Intermolecular cycloaddition of a 2-bromo-1,3-diene with activated dienophiles proceeded under Lewis acid catalysis in generally high yields with good to excellent endo diastereoselectivity. The resulting vinyl bromide cycloadducts underwent subsequent Stille and Suzuki cross-couplings under standard conditions in good yields. Both the Diels-Alder and cross-coupling steps were highly tolerant of a range of functionalities and protecting groups. The use of the bromine substituent as both a cycloaddition directing group and cross-coupling nucleofuge avoids extra steps required to install and remove the more commonly used silyl enol ethers and enol sulfonates for each transformation and gives full control of the alkene regiochemistry throughout the reaction sequence. The 2-bromo-1,3-dienes were conveniently prepared in three steps from readily available aldehydes and established as hydrolytically stable and practical synthetic intermediates.