The pro-renin receptor (PRR) is an important novel component of the renin-angiotensin (Ang) system that has multiple functions, which are not yet completely understood. In this study, we aimed to explore the effect of PRR on the formation of Ang II-induced abdominal aortic aneurysm (AAA) in apolipoprotein E-knockout mice. We used Ang II (1.44 mg/kg/day) infusion to induce AAA followed by a treatment of saline, telmisartan, no treatment, Ad-EGFP, Ad-PRR, or Ad-PRR plus telmisartan. The incidence of AAA was 35%, 60%, 65%, 90%, and 55% in the Telmisartan, Vehicle, Ad-EGFP, Ad-PRR, and Ad-PRR+Telmisartan groups, respectively. Compared with the Vehicle and Ad-EGFP groups, PRR overexpression markedly increased macrophage infiltration; levels of proinflammatory cytokines, including monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α); the expression and activity of MMP2 and MMP9; NOX2 and NOX4 protein and mRNA expression; nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity; extracellular-signal-regulated kinase (ERK) and P38MAPK expression; but decreased smooth muscle cells content in AAA. However, telmisartan reversed the adverse effects of PRR. In addition, ERK inhibitor PD98059 eliminated the acceleration of Ang II-induced AAA formation by PRR, and coadministration of telmisartan and PD98059 further abolished the adverse effects of PRR on Ang II-induced AAA formation. Thus, PRR plays an important role in the pathological development of AAA via both Ang II-dependent and Ang II-independent activation of ERK pathways. These results suggest that inhibition of PRR activation may be a promising approach to the treatment of AAA.
Keywords: PD98059; abdominal; aortic aneurysm; oxidative stress; pro-renin receptor; telmisartan.