The locus coeruleus (LC) is involved in numerous crucial brain functions and several disorders like depression and Alzheimer's disease. Recently, the LC resting-state functional connectivity (rs-fc) has been investigated in functional MRI by calculating the blood oxygen level-dependent (BOLD) response extracted using Montreal Neurological Institute (MNI) space masks. To corroborate these results, we aimed to investigate the LC rs-fc at native space by improving the identification of the LC location using a neuromelanin sensitive sequence. Twenty-five healthy male participants (mean age 24.8 ± 4.2) were examined in a Siemens MAGNETOM Prisma 3 T MRT applying a neuromelanin sensitive T1TSE sequence and functional MRI. We compared the rs-fc of LC calculated by a MNI-based approach with extraction of the BOLD signal at the exact individual location of the LC after applying CompCor and field map correction. As a measure of advance, a marked increase of regional homogeneity (ReHo) of time series within LC could be achieved with the subject-specific approach. Furthermore, the methods differed in the rs-fc to the right temporoparietal junction, which showed stronger connectivity to the LC in the MNI-based method. Nevertheless, both methods comparably revealed LC rs-fc to multiple brain regions including ACC, bilateral thalamus, and cerebellum. Our results are relevant for further research assessing and interpreting LC function, especially in patient populations examined at 3 T MRI.
Keywords: locus coeruleus; neuromelanin sensitive MRI; resting-state functional connectivity.
© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.