This paper reports on the development of a technology involving -enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass ( ), high optical quality, radiopure -containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of (3034 keV) is 4-6 keV FWHM. The rejection of the -induced dominant background above 2.6 MeV is better than . Less than activity of and in the crystals is ensured by boule recrystallization. The potential of -enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only exposure: the two neutrino double-beta decay half-life of has been measured with the up-to-date highest accuracy as = [6.90 ± 0.15(stat.) ± 0.37(syst.)] . Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of .
© The Author(s) 2017.