Background: Poor nutritional status is frequently observed in end-stage renal disease patients and associated with adverse clinical outcomes and increased mortality. Loss of amino acids (AAs) during hemodialysis (HD) may contribute to protein malnutrition in these patients.
Objective: We aimed to assess the extent of AA loss during HD in end-stage renal disease patients consuming their habitual diet.
Methods: Ten anuric chronic HD patients (mean ± SD age: 67.9 ± 19.3 y, BMI: 23.2 ± 3.5 kg/m2), undergoing HD 3 times per week, were selected to participate in this study. Spent dialysate was collected continuously and plasma samples were obtained directly before and after a single HD session in each participant. AA profiles in spent dialysate and in pre-HD and post-HD plasma were measured through ultra-performance liquid chromatography to determine AA concentrations and, as such, net loss of AAs. In addition, dietary intake before and throughout HD was assessed using a 24-h food recall questionnaire during HD. Paired-sample t tests were conducted to compare pre-HD and post-HD plasma AA concentrations.
Results: During an HD session, 11.95 ± 0.69 g AAs were lost via the dialysate, of which 8.26 ± 0.46 g were nonessential AAs, 3.69 ± 0.31 g were essential AAs, and 1.64 ± 0.17 g were branched-chain AAs. As a consequence, plasma total and essential AA concentrations declined significantly from 2.88 ± 0.15 and 0.80 ± 0.05 mmol/L to 2.27 ± 0.11 and 0.66 ± 0.05 mmol/L, respectively (P < 0.05). AA profiles of pre-HD plasma and spent dialysate were similar. Moreover, AA concentrations in pre-HD plasma and spent dialysate were strongly correlated (Spearman's ρ = 0.92, P < 0.001).
Conclusions: During a single HD session, ∼12 g AAs are lost into the dialysate, causing a significant decline in plasma AA concentrations. AA loss during HD can contribute substantially to protein malnutrition in end-stage renal disease patients. This study was registered at the Netherlands Trial Registry (NTR7101).
Keywords: chronic hemodialysis patients; kidney disease; muscle wasting; nutrient loss; protein.
Copyright © The Author(s) 2020.