Ethnopharmacological relevance: Sini decoction (SND) is a famous Traditional Chinese Medicine (TCM) formula composed of Acontium carmichaeli, Zingiber officinale and Glycyrrhiza uralensis, which is considered as an efficient formula against doxorubicin (DOX)-induced heart failure. But the compatibility mechanism of SND remains unclear.
Aim of the study: The present study aimed to investigate the compatibility mechanism of SND against DOX-induced heart failure in rats.
Materials and methods: Mass spectrometry-based serum metabolomics were performed. The relative distance values (RDVs) of SND, A. carmichaeli-free decoction (ACFD), Z. officinale-free decoction (ZOFD) and G. uralensis-free decoction (GUFD) treated groups from the control/DOX groups in multidimensional space were calculated to provide a measure of compatibility effect of SND. SND, ACFD, ZOFD, GUFD-targeted metabolic pathways were identified and compared to investigate the synergistic mechanism of SND by computational systems analysis. Real-time quantitative PCR was further employed to validate the key metabolic pathways at the level of the gene.
Results: The RDVs combined with the hemodynamic and biochemical analysis showed that the protection effects were sorted as SND > GUFD > ZOFD > ACFD. It revealed that DOX-induced heart failure perturbed 16 metabolic pathways, and SND, GUFD, ZOFD and ACFD-treated groups could significantly reversed 12, 10, 7 and 6 metabolic pathways of these 16 metabolic pathways, respectively. Metabolic pathway and RT-PCR analysis indicated that both SND and GUFD could protect DOX-induced heart failure mainly by regulating PLA2-COX pathway and PLA2-CYP pathway.
Conclusion: It can be concluded that A. carmichaeli played an essential role in attenuation of DOX-induced heart failure among the three herb constituents of SND and the constituent herbs mutually reinforced each other. This work demonstrated that metabolomics combined with computational systems analysis was a promising tool for uncovering the compatibility effects of TCM.
Keywords: Compatibility; Doxorubicin-induced heart failure; Mass spectrometry; Metabolomcis; Sini decoction.
Copyright © 2020 Elsevier B.V. All rights reserved.