Glycine-Chitosan-Based Flexible Biodegradable Piezoelectric Pressure Sensor

ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9008-9016. doi: 10.1021/acsami.9b21052. Epub 2020 Feb 14.

Abstract

This paper presents flexible pressure sensors based on free-standing and biodegradable glycine-chitosan piezoelectric films. Fabricated by the self-assembly of biological molecules of glycine within a water-based chitosan solution, the piezoelectric films consist of a stable spherulite structure of β-glycine (size varying from a few millimeters to 1 cm) embedded in an amorphous chitosan polymer. The polymorphic phase of glycine crystals in chitosan, evaluated by X-ray diffraction, confirms formation of a pure ferroelectric phase of glycine (β-phase). Our results show that a simple solvent-casting method can be used to prepare a biodegradable β-glycine/chitosan-based piezoelectric film with sensitivity (∼2.82 ± 0.2 mV kPa-1) comparable to those of nondegradable commercial piezoelectric materials. The measured capacitance of the β-glycine/chitosan film is in the range from 0.26 to 0.12 nF at a frequency range from 100 Hz to 1 MHz, and its dielectric constant and loss factor are 7.7 and 0.18, respectively, in the high impedance range under ambient conditions. The results suggest that the glycine-chitosan composite is a promising new biobased piezoelectric material for biodegradable sensors for applications in wearable biomedical diagnostics.

Keywords: biodegradable pressure sensor; chitosan; piezoelectric; wearable electronics; β-glycine.

MeSH terms

  • Biodegradable Plastics*
  • Chitosan / chemistry*
  • Glycine / chemistry*
  • Pressure*

Substances

  • Biodegradable Plastics
  • Chitosan
  • Glycine