Mesoporous Metal-Metalloid Amorphous Alloys: The First Synthesis of Open 3D Mesoporous Ni-B Amorphous Alloy Spheres via a Dual Chemical Reduction Method

Small. 2020 Mar;16(10):e1906707. doi: 10.1002/smll.201906707. Epub 2020 Feb 5.

Abstract

Selective hydrogenation of nitriles is an industrially relevant synthetic route for the preparation of primary amines. Amorphous metal-boron alloys have a tunable, glass-like structure that generates a high concentration of unsaturated metal surface atoms that serve as active sites in hydrogenation reactions. Here, a method to create nanoparticles composed of mesoporous 3D networks of amorphous nickel-boron (Ni-B) alloy is reported. The hydrogenation of benzyl cyanide to β-phenylethylamine is used as a model reaction to assess catalytic performance. The mesoporous Ni-B alloy spheres have a turnover frequency value of 11.6 h-1 , which outperforms non-porous Ni-B spheres with the same composition. The bottom-up synthesis of mesoporous transition metal-metalloid alloys expands the possible reactions that these metal architectures can perform while simultaneously incorporating more Earth-abundant catalysts.

Keywords: 3D materials; amorphous alloys; mesoporous metal alloys; metal-boron alloys; nanoarchitectures.