κ-opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to ischemia and reperfusion injury via STAT3-OPA1 pathway

Eur J Pharmacol. 2020 May 5:874:172987. doi: 10.1016/j.ejphar.2020.172987. Epub 2020 Feb 4.

Abstract

Mitochondrial dynamics, determining mitochondrial morphology, quality and abundance, have recently been implicated in myocardial ischemia and reperfusion (MI/R) injury. The roles of κ-opioid receptor activation in cardioprotection have been confirmed in our previous studies, while the underlying mechanism associated with mitochondrial dynamics remains unclear. This study aims to investigate the effect of κ-opioid receptor activation on the pathogenesis of MI/R and its underlying mechanisms. MI/R mouse model and hypoxia-reoxygenation cardiomyocyte model were established in this study. Mitochondrial dynamics were analyzed with transmission electron microscopy in vivo and confocal microscopy in vitro. STAT3 phosphorylation and OPA1 expression were detected by Western blotting. We show here that κ-opioid receptor activation with its selective receptor agonist U50,488H promoted mitochondrial fusion and enhanced myocardial resistance to MI/R injury, while these protective effects were blockaded by nor-BNI, a selective κ-opioid receptor antagonist. In addition, κ-opioid receptor activation increased STAT3 phosphorylation and OPA1 expression, which were blockaded by nor-BNI. Furthermore, inhibition of STAT3 phosphorylation by stattic, a specific STAT3 inhibitor, repressed the effects of κ-opioid receptor activation on promoting OPA1 expression and mitochondrial fusion, as well as inhibiting cell apoptosis and oxidative stress both in vivo and in vitro during MI/R injury. Overall, our data for the first time provide evidence that κ-opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to MI/R injury via STAT3-OPA1 pathway. Targeting the pathway regulated by κ-opioid receptor activation may be a potential therapeutic strategy for MI/R injury.

Keywords: Mitochondrial dynamics; OPA1; STAT3; κ-opioid receptor.

MeSH terms

  • 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer / pharmacology
  • Animals
  • Apoptosis / drug effects
  • Cells, Cultured
  • GTP Phosphohydrolases / metabolism*
  • Male
  • Mice, Inbred C57BL
  • Mitochondrial Dynamics*
  • Myocardial Reperfusion Injury / metabolism*
  • Myocardial Reperfusion Injury / pathology
  • Myocardium / metabolism
  • Myocardium / pathology
  • Naltrexone / analogs & derivatives
  • Naltrexone / pharmacology
  • Narcotic Antagonists / pharmacology
  • Phosphorylation
  • Rats, Sprague-Dawley
  • Receptors, Opioid, kappa / agonists
  • Receptors, Opioid, kappa / antagonists & inhibitors
  • Receptors, Opioid, kappa / metabolism*
  • STAT3 Transcription Factor / metabolism*
  • Signal Transduction

Substances

  • Narcotic Antagonists
  • Receptors, Opioid, kappa
  • STAT3 Transcription Factor
  • norbinaltorphimine
  • Naltrexone
  • 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
  • GTP Phosphohydrolases
  • Opa1 protein, mouse