Polycyclic aromatic hydrocarbons (PAHs) present in crude oil are known to impair visual development in fish. However, the underlying mechanism of PAH-induced toxicity to the visual system of fish is not understood. Embryonic zebrafish (Danio rerio) at 4 h post fertilization were exposed to weathered crude oil and assessed for visual function using an optokinetic response, with subsequent samples taken for immunohistochemistry and gene expression analysis. Cardiotoxicity was also assessed by measuring the heart rate, stroke volume, and cardiac output, as cardiac performance has been proposed to be a contributing factor to eye-associated malformations following oil exposure. Larvae exposed to the highest concentrations of crude oil (89.8 μg/L) exhibited an increased occurrence of bradycardia, though no changes in stroke volume or cardiac output were observed. However, genes important in eye development and phototransduction were downregulated in oil-exposed larvae, with an increased occurrence of cellular apoptosis, reduced neuronal connection, and reduced optokinetic behavioral response in zebrafish larvae.