VOTING-BASED SEGMENTATION OF OVERLAPPING NUCLEI IN CLARITY IMAGES

Proc IEEE Int Symp Biomed Imaging. 2018 Apr:2018:658-662. doi: 10.1109/ISBI.2018.8363660. Epub 2018 May 24.

Abstract

New tissue-clearing techniques and improvements in optical microscopy have rapidly advanced capabilities to acquire volumetric imagery of neural tissue at resolutions of one micron or better. As sizes for data collections increase, accurate automatic segmentation of cell nuclei becomes increasingly important for quantitative analysis of imaged tissue. We present a cell nucleus segmentation method that is formulated as a parameter estimation problem with the goal of determining the count, shapes, and locations of nuclei that most accurately describe an image. We applied our new voting-based approach to fluorescence confocal microscopy images of neural tissue stained with DAPI, which highlights nuclei. Compared to manual counting of cells in three DAPI images, our method outperformed three existing approaches. On a manually labeled high-resolution DAPI image, our method also outperformed those methods and achieved a cell count accuracy of 98.99% and mean Dice coefficient of 0.6498.