Objectives: The objective of the present work to encapsulate the resveratrol (RES) inside the chitosan-based microsponges, employing the systematic optimization by 33 Box-Behnken design for the colonic targeting.Significance: Enhanced therapeutic efficacy of RES-loaded microsponges and matrix tablets, vis-a-vis pureRES for ulcerative colitis.Methods: RES-loaded microsponges were prepared employing the systematic optimization by 33 Box-Behnken design for the colonic targeting. The best-optimizedRES-loaded microsponge was compressed in the form of a tablet, employing pectin as a matrix-forming material. The encapsulation of RES inside microsponge was confirmed by XRD, DSC and FT-IR. Further, both RES-loaded microsponges and matrix tablets were evaluated for in vitro release kinetics and further evaluated for in vivo ulcerative colitis animal model.Results: Optimization experiments was obtained as the high value of r2 (particle size = 0.9999; %EE = 0.9652; %CDR = 0.9469) inferred excellent goodness of fit. SEM revealed nearly spherical and porous nature of RES-loaded microsponges. The in vitro release kinetic showed zero-order release for RES-loaded microsponges and Korsmeyer-Peppas model for matrix tablets. The pharmacodynamic studies, in ulcerative colitis rat model, indicated better therapeutic efficacy of drug-loaded microsponges and matrix tablets, vis-a-vis pure RES. Thus, the present study advocates the potential of RES based microsponges delivered by pectin based matrix tablet, in the treatment of various colonic disorders.Conclusion: The present study proved that RES-loaded microsponges and matrix tablets based on chitosan and pectin can be the ideal delivery system for colonic delivery of RES.
Keywords: Box–Behnken design; Chitosan; pectin; quasi emulsion solvent diffusion method; release kinetics; ulcerative colitis.