Opposing Regulation of Cocaine Seeking by Glutamate and GABA Neurons in the Ventral Pallidum

Cell Rep. 2020 Feb 11;30(6):2018-2027.e3. doi: 10.1016/j.celrep.2020.01.023.

Abstract

Projections from the nucleus accumbens to the ventral pallidum (VP) regulate relapse in animal models of addiction. The VP contains GABAergic (VPGABA) and glutamatergic (VPGlu) neurons, and a subpopulation of GABAergic neurons co-express enkephalin (VPPenk). Rabies tracing reveals that VPGlu and VPPenk neurons receive preferential innervation from upstream D1- relative to D2-expressing accumbens neurons. Chemogenetic stimulation of VPGlu neurons inhibits, whereas stimulation of VPGABA and VPPenk neurons potentiates cocaine seeking in mice withdrawn from intravenous cocaine self-administration. Calcium imaging reveals cell type-specific activity patterns when animals learn to suppress drug seeking during extinction training versus engaging in cue-induced cocaine seeking. During cued seeking, VPGABA neurons increase their overall activity, and VPPenk neurons are selectively activated around nose pokes for cocaine. In contrast, VPGlu neurons increase their spike rate following extinction training. These data show that VP subpopulations differentially encode and regulate cocaine seeking, with VPPenk and VPGABA neurons facilitating and VPGlu neurons inhibiting cocaine seeking.

Keywords: GABA; calcium imaging; chemogenetics; cocaine; enkephalin; glutamate; relapse; self-administration; ventral pallidum; vglut2.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Basal Forebrain / drug effects*
  • Cocaine / pharmacology
  • Cocaine / therapeutic use*
  • GABAergic Neurons / metabolism*
  • Glutamic Acid / metabolism*
  • Humans
  • Mice

Substances

  • Glutamic Acid
  • Cocaine