Due to several gaps remaining in the toxicological evaluation of nanomaterials (NMs), consumers and public health agencies have shown increasing concern for human health protection. In addition to aluminum (Al) microparticles, Al-containing nanomaterials (Al NMs) have been applied by food industry as additives and contact materials. Due to the limited amount of literature on the toxicity of Al NMs, this study aimed to evaluate the in vivo genotoxic potential of Al0 and Al2O3 NMs after acute oral exposure. Male Sprague-Dawley rats were administered three successive gavages at 6, 12.5 and 25 mg/kg bw. A comparison with AlCl3 was done in order to assess the potential effect of dissolution into Al ions. Both DNA strand breaks and oxidative DNA damage were investigated in six organs/tissues (duodenum, liver, kidney, spleen, blood and bone marrow) with the alkaline and the Fpg-modified comet assays. Concomitantly, chromosomal damage was investigated in bone marrow and colon with the micronucleus assay. The comet assay only showed DNA damage with Al2O3 NMs in bone marrow (BM), while AlCl3 induced slight but non-significant oxidative DNA damage in blood. No increase of chromosomal mutations was observed after treatment with the two Al MNs either in the BM or in the colons of rats.
Keywords: aluminum; comet assay; genotoxicity; gut; liver; micronucleus assay; nanomaterial; oral route.