Alteration of cardiolipin biosynthesis and remodeling in single right ventricle congenital heart disease

Am J Physiol Heart Circ Physiol. 2020 Apr 1;318(4):H787-H800. doi: 10.1152/ajpheart.00494.2019. Epub 2020 Feb 14.

Abstract

Despite advances in both medical and surgical therapies, individuals with single ventricle heart disease (SV) remain at high risk for the development of heart failure (HF). However, the molecular mechanisms underlying remodeling and eventual HF in patients with SV are poorly characterized. Cardiolipin (CL), an inner mitochondrial membrane phospholipid, is critical for proper mitochondrial function, and abnormalities in CL content and composition are known in various cardiovascular disease etiologies. The purpose of this study was to investigate myocardial CL content and composition in failing and nonfailing single right ventricle (RV) samples compared with normal control RV samples, to assess mRNA expression of CL biosynthetic and remodeling enzymes, and to quantitate relative mitochondrial copy number. A cross-sectional analysis of RV myocardial tissue from 22 failing SV (SVHF), 9 nonfailing SV (SVNF), and 10 biventricular control samples (BVNF) was performed. Expression of enzymes involved in CL biosynthesis and remodeling were analyzed using RT-qPCR and relative mitochondrial DNA copy number determined by qPCR. Normal phase high-pressure liquid chromatography coupled to electrospray ionization mass spectrometry was used to quantitate total and specific CL species. While mitochondrial copy number was not significantly different between groups, total CL content was significantly lower in SVHF myocardium compared with BVNF controls. Despite having lower total CL content however, the relative percentage of the major tetralinoleoyl CL species is preserved in SVHF samples relative to BVNF controls. Correspondingly, expression of enzymes involved in CL biosynthesis and remodeling were upregulated in SVHF samples when compared with both SVNF samples and BVNF controls.NEW & NOTEWORTHY The mechanisms underlying heart failure in the single ventricle (SV) congenital heart disease population are largely unknown. In this study we identify alterations in cardiac cardiolipin metabolism, composition, and content in children with SV heart disease. These findings suggest that cardiolipin could be a novel therapeutic target in this unique population of patients.

Keywords: cardiolipin; hypoplastic left heart syndrome; mitochondria; single ventricle congenital heart disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cardiolipins / biosynthesis*
  • Cardiolipins / genetics
  • Child
  • Child, Preschool
  • DNA, Mitochondrial / genetics
  • Female
  • Heart Ventricles / abnormalities
  • Heart Ventricles / metabolism
  • Heart Ventricles / pathology
  • Humans
  • Male
  • Mitochondria, Heart / enzymology
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Univentricular Heart / genetics
  • Univentricular Heart / metabolism*
  • Ventricular Remodeling

Substances

  • Cardiolipins
  • DNA, Mitochondrial
  • RNA, Messenger