Cancer-associated fibroblasts that restrain cancer progression: Hypotheses and perspectives

Cancer Sci. 2020 Apr;111(4):1047-1057. doi: 10.1111/cas.14346. Epub 2020 Mar 10.

Abstract

The roles of cancer-associated fibroblasts (CAF) in the progression of various types of cancers are well established. CAF promote cancer progression through pleiotropic mechanisms, including the secretion of soluble factors and extracellular matrix, physical interactions with cancer cells, and the regulation of angiogenesis, immunity and metabolism. Their contribution to therapeutic resistance is also well appreciated. Therefore, CAF have been considered as a therapeutic target in cancer. However, recent studies in autochthonous pancreatic cancer models suggest that specific subset(s) of CAF exhibit cancer-restraining roles, indicating that CAF are functionally and molecularly heterogeneous, which is supported by recent single-cell transcriptome analyses. While cancer-promoting CAF (pCAF) have been extensively studied, the nature and specific marker(s) of cancer-restraining CAF (rCAF) have remained uncharacterized. Interestingly, a recent study provided insight into the nature of rCAF and suggested that they may share molecular properties with pancreatic stellate cells (PSC) and mesenchymal stem/stromal cells (MSC). Complicating this finding is that PSC and MSC have been shown to promote the formation of a tumor-permissive and tumor-promoting environment in xenograft tumor models. However, these cells undergo significant transcriptional and epigenetic changes during ex vivo culture, which confounds the interpretation of experimental results based on the use of cultured cells. In this short review, we describe recent studies and hypotheses on the identity of rCAF and discuss their analogy to fibroblasts that suppress fibrosis in fibrotic diseases. Finally, we discuss how these findings can be exploited to develop novel anticancer therapies in the future.

Keywords: Meflin; cancer-restraining cancer-associated fibroblasts; fibrosis; mesenchymal stem/stromal cells; tumor microenvironment.

Publication types

  • Review

MeSH terms

  • Animals
  • Cancer-Associated Fibroblasts / metabolism*
  • Cancer-Associated Fibroblasts / pathology
  • Cell Transformation, Neoplastic / genetics*
  • Drug Resistance, Neoplasm / genetics
  • Extracellular Matrix / genetics
  • Heterografts
  • Humans
  • Mesenchymal Stem Cells / metabolism
  • Mice
  • Neoplasms / genetics*
  • Neoplasms / pathology
  • Neovascularization, Pathologic / genetics*
  • Neovascularization, Pathologic / pathology
  • Pancreatic Stellate Cells / metabolism
  • Tumor Microenvironment / genetics