Renal accumulation and exposure of cadmium originating from pollution in agricultural land and the prevalence of cigarette smoking remains an unneglectable human health concern. Whereas cadmium exposure has been correlated with increased incidence of a variety of kidney diseases, little is known pertaining to its effect on renal drug disposition and response in patients. Here, we report that cadmium exposure significantly increased the activity of organic cation transporter 2 (OCT2), a critical renal drug transporter recommended in United States Federal Drug Administration guidance for assessment during drug development. Cadmium enhanced OCT2 trafficking to the cell membrane both in vitro and in vivo. Mechanistically cadmium-mediated OCT2 translocation was found to involve protein-protein interaction between serine/threonine-protein kinase AKT2, calcium/calmodulin and the AKT substrate AS160 in in vitro cellular studies. The formed protein complex could selectively facilitate phosphorylation of AKT2 at T309, which induced translocation of OCT2 to the plasma membrane. Moreover, cadmium exposure markedly exacerbated nephrotoxicity induced by cisplatin, an OCT2 substrate, by increasing its accumulation in the mouse kidney. Consistently, there was a significant correlation between plasma cadmium level and alteration of renal function in cervical cancer patients who underwent chemotherapy with cisplatin. Thus, our studies suggest that membrane transporter distribution induced by cadmium exposure is a previously unrecognized factor for the broad variation in renal drug disposition and response.
Keywords: cadmium; cisplatin; nephrotoxicity; organic cation transporter; trafficking.
Copyright © 2019 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.