Trypanosoma brucei CRK9 is an essential cyclin-dependent kinase for the parasite-specific mode of pre-mRNA processing. In trypanosomes, protein coding genes are arranged in directional arrays that are transcribed polycistronically, and individual mRNAs are generated by spliced leader trans-splicing and polyadenylation, processes that are functionally linked. Since CRK9 silencing caused a decline of mRNAs, a concomitant increase of unspliced pre-mRNAs and the disappearance of the trans-splicing Y structure intermediate, CRK9 is essential for the first step of splicing. CRK9 depletion also caused a loss of phosphorylation in RPB1, the largest subunit of RNA polymerase (pol) II. Here, we established cell lines that exclusively express analog-sensitive CRK9 (CRK9AS ). Inhibition of CRK9AS in these cells by the ATP-competitive inhibitor 1-NM-PP1 reproduced the splicing defects and proved that it is the CKR9 kinase activity that is required for pre-mRNA processing. Since defective trans-splicing was detected as early as 5 min after inhibitor addition, CRK9 presumably carries out reversible phosphorylation on the pre-mRNA processing machinery. Loss of RPB1 phosphorylation, however, took 12-24 hr. Surprisingly, RNA pol II-mediated RNA synthesis in 24 hr-treated cells was upregulated, indicating that, in contrast to other eukaryotes, RPB1 phosphorylation is not a prerequisite for transcription in trypanosomes.
Keywords: analog-sensitive kinase; chemical enzyme inhibition; cyclin-dependent kinase; pre-mRNA processing; pre-mRNA splicing.
© 2020 John Wiley & Sons Ltd.