Pancreatic ductal adenocarcinoma is one of the deadliest malignant tumors, and many genes play important roles in its development. The hepatocyte nuclear factor-1a (HNF-1a) gene encodes HNF-1a, which is a transcriptional activator. HNF-1a regulates the tissue-specific expression of multiple genes, especially in pancreatic islet cells and in the liver. However, the role of the HNF-1a gene in the development of pancreatic cancer is still unclear. Here, we used immunohistochemical staining and real-time PCR to analyze HNF-1a expression in pancreatic cancer tissue. Stable cell lines with HNF-1a knockdown or overexpression were established to analyze the role of HNF-1a in pancreatic cancer cell proliferation and apoptosis by colony formation assay and flow cytometry. We also analyzed the L-type pyruvate kinase (PKLR) promoter sequence to identify the regulatory effect of HNF-1a on PKLR transcription and confirmed the HNF-1a binding site in the PKLR promoter via a chromatin immunoprecipitation assay. HNF-1a was found to be overexpressed in pancreatic cancer and promoted proliferation while inhibiting apoptosis in pancreatic cancer cells. PKLR was identified as the downstream target gene of HNF-1a and binding of HNF-1a at two sites in PKLR (-1931/-1926 and -966/-961) regulated PKLR transcription. In conclusion, HNF-1a is overexpressed in pancreatic cancer, and the transcription factor HNF-1a can promote pancreatic cancer growth and apoptosis resistance via its target gene PKLR.
Keywords: HNF-1a; PKLR; apoptosis; pancreatic cancer.
© The Author(s) 2020. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: [email protected].