Designing a multifunctional theranostic nanoplatform with optional therapeutic strategies is highly desirable to select the most suitable therapeutic manners for the patient's cancer treatment. Among all shapes of silver materials, a silver nanoprism was reported to have great potential in photothermal therapy (PTT) owing to its strong surface plasmon resonance band in the near-infrared region. However, its instability in physicochemical environments and its severe toxicity confined its further application. To overcome this, herein, we demonstrated a silver prism-polydopamine (PDA) hybrid nanoplatform for tumor treatment with three therapeutic strategies. Specifically, the PDA coating endows the silver prism with excellent stability, high photothermal conversion, long-term in vivo biocompatibility, ease of decorating targeting ligands, and drug delivery. Upon near-infrared laser irradiation (808 nm, 1 W/cm2), tumors can be eradicated by the as-prepared nanoparticle through monomodal PTT. Besides, when combined with a chemical drug, this nanoparticle is able to inhibit tumor growth via combined photochemotherapy under a lower laser treatment (0.7 W/cm2). Furthermore, by supplementing with an immune checkpoint blockade, the realized synergistic photochemoimmunotherapy exhibits high efficacy to inhibit tumor relapse and metastasis. Moreover, owing to the high photothermal conversion efficiency and great X-ray attenuation ability of the silver nanoprism, our designed nanoplatform can be used in photoacoustic, computed tomography, and infrared thermal multimodal imaging. Our study provides a multifunctional nanoparticle for tumor theranostics, and this therapeutic strategy-optional nanoplatform shows promise in future biomedicine.
Keywords: combined therapy; drug delivery; immunotherapy; multimodal imaging; photothermal therapy; silver nanoprism.