In the process of micro-milling, the appearance of the edge-size-effect of micro-milling tools cannot be ignored when the cutting parameters are smaller than the cutting edge arc radius (r0) of the micro-milling tool or close to it, and it could easily lead to low cutting efficiency and poor surface quality of the micro-slot. Through micro-milling experiments on Al7075-T6 materials, the change of milling force in the plough zone and shear zone during micro-milling was studied, and the minimum cutting thickness (hmin) range was determined to be 0.2r0-0.4r0 based on r0 of the micro-milling tool. Subsequently, the effect of fz/r0 (fz denotes feed rate per tooth) on the top burr formation of the micro-slot, the surface roughness (Ra) of the micro-slot bottom, and the milling force was studied, and a size-effect band of micro milling was established to determine the strong size-effect zone, transition size-effect zone, and the weak size-effect zone. Finally, two different fz/r0 in the strong size-effect zone and the weak size-effect zone are compared, which proves that the main purpose of the cutting parameters optimization of micro-milling is to avoid cutting parameters locating in the strong edge-size-effect zone. The above conclusions provide a theoretical basis for the selection of micro-milling cutting parameters, and an important reference in improving the surface quality of micro-milling.
Keywords: burr; cutting parameter optimization; edge-size-effect; micro-milling; surface quality.