Omnivores have long been known to play an important role in determining the stability of ecological communities. Recent theoretical studies have suggested that they may also increase the resilience of their communities to habitat destruction, one of the major drivers of species extinctions globally. However, these outcomes were obtained for minimal food webs consisting of only a single omnivore and its prey species, while much more complex communities can be anticipated in nature. In this study, we undertake a systematic comparative analysis of the robustness of metacommunities containing various omnivory structures to habitat loss and fragmentation using a mathematical model. We observe that, in general, omnivores are better able to survive facing habitat destruction than specialist predators of similar trophic level. However, the community as a whole does not always benefit from the presence of omnivores, as they may drive their intraguild prey to extinction. We also analyze the frequency with which these modules occur in a set of empirical food webs, and demonstrate that variation in their rate of occurrence is consistent with our model predictions. Our findings demonstrate the importance of considering the complete food web in which an omnivore is embedded, suggesting that future study should focus on more holistic community analysis.
Keywords: competition capability; food web persistence; omnivory; patch loss and fragmentation; patch-dynamic model; trophic-dependent dispersal.
© 2020 by the Ecological Society of America.