Aims: Dihydroartemisinin (DHA) is currently considered as the promising cancer therapeutic drug. In this study, we aimed to investigate the anti-proliferative and anti-metastasis effects of DHA.
Main methods: Utilizing breast cancer cells MCF-7, MDA-MB-231 and BT549, cell proliferation, migration and invasion were detected. RT-qPCR was performed to detect CIZ1, TGF-β1 and Snail expression, and the interactions of these related molecules were analyzed by GeneMANIA database. Western blot detected CIZ1, TGF-β1/Smads signaling and Snail expression in DHA-treated cells, in TGFβ1-induced cells with enhanced metastatic capacity, and in cells treated with DHA plus TGFβ1/TGFβ1 inhibitor SD-208.
Key findings: Results indicated DHA inhibited breast cancer cell proliferation and migration, with more potent effects compared with that of artemisinin. RT-qPCR and Western blot showed DHA inhibited CIZ1, TGF-β1 and Snail expression, and these molecules were shown to have protein-protein interactions by bioinformatics. Furthermore, TGFβ1-treatment enhanced MCF-7 migration and invasion, and CIZ1, TGF-β1/Smads signaling and snail activities; DHA, SD-208, combination of DHA and SD-208 reversed these conditions, preliminarily proving the cascade regulation between TGF-β1 signaling and CIZ1. MCF-7 xenografts model demonstrated the inhibition of DHA on tumor burden, and its mechanisms and well-tolerance in vivo; combination of DHA and SD-208 tried by us for the first time showed better treatment effects, but possible liver impairment made its use still keep cautious.
Significance: DHA treatment inhibits the proliferation and metastasis of breast cancer, through suppressing TGF-β1/Smad signaling and CIZ1, suggesting the promising potential of DHA as a well-tolerated antitumor TGF-β1 pathway inhibitor.
Keywords: Breast cancer; CIZ1; Dihydroartemisinin; TGF-β1/Smad signaling.
Copyright © 2020 Elsevier Inc. All rights reserved.