Eckol from Ecklonia cava ameliorates TNF-α/IFN-γ-induced inflammatory responses via regulating MAPKs and NF-κB signaling pathway in HaCaT cells

Int Immunopharmacol. 2020 Feb 20:82:106146. doi: 10.1016/j.intimp.2019.106146. Online ahead of print.

Abstract

We investigated the protective effect of the bioactive compound eckol on inflammatory-related skin lesions in vitro. HaCaT cells were stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mixture, and treated with various concentration of eckol (25, 50, and 100 µg/ml). The expression of pro-inflammatory cytokines and chemokines were analyzed by enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR), respectively. Mitogen-activated protein kinase (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways regulate immune and inflammation responses. Phosphorylation of MAPKs and NF-κB, indicating activation of respective signaling pathways, was examined by western blot analysis. Treatment of TNF-α and IFN-γ promoted the mRNA expression and production of pro-inflammatory cytokines and chemokines in HaCaT cells. However, eckol significantly suppressed the these mediators. Furthermore, activation of TNF-α/IFN-γ-induced MAPKs and NF-κB signaling pathway was inhibited by eckol treatment. Eckol also hampered the TNF-α/IFN-γ-mediated nuclear translocation of NF-κB p65 in HaCaT cells. Taken together, our findings demonstrate that eckol shows effective protective activity against TNF-α/IFN-γ-induced skin inflammation.

Keywords: Ecklonia cava; Eckol; HaCaT cells; MAPKs; NF-κB; Skin inflammation.