The regenerative materials for hard tissues, i.e. tooth (enamel, dentin, and cementum) and bone, require extremely high standards in terms of their mechanical properties, biocompatibility, bioactivity, and multiple-functionality. Among them, the biomedical materials inspired from various natural proteins have attracted increasing research attention. These blueprint proteins include various hard-tissue-related proteins, such as collagen and non-collagenous proteins (e.g. amelogenin, dentin phosphoprotein, bone sialoprotein, and osteopontin), as well as other natural proteins like mussel foot proteins. The current review highlights the structure-function relationship of protein bioinspired biomedical materials (e.g. polymers and polypeptides) and their applications for tooth and bone regeneration. Specifically, the materials bioinspired from salivary acquired pellicle proteins, which have a strong affinity to hydroxyapatite surfaces, are discussed in detail. Finally, the challenges associated with these protein bioinspired materials and their industrialization potentials are discussed.