Acoustic emission (AE) is a monitoring technique that has proven its suitability in and outside of the laboratory in characterizing the structural condition of materials. In composites for construction and repair, several breakthroughs have been recently noted involving mainly fracture mode evaluation based on the AE waveform characteristics. However, the acquired signals, apart from the cracking source strongly depend on the size and shape of the plate specimens. While the effect of wave propagation distance has been studied, the effect of the lateral dimension of the plate has not been given proper attention, being a broken link in translating the results from small coupons to real size plates. This paper examines wave propagation from artificial sources as well as actual AE signals in textile-reinforced cement (TRC) plates indicating the strong differences in the results that are attributed just to the shape and size of the specimens and showing that interpretation toward the actual sources is firmly connected to geometric factors.
Keywords: acoustic emission; bending; textile-reinforced cementitious (TRC) composites; wave analysis; wave propagation.