The lateral hypothalamus (LH) has long been implicated in maintaining behavioral homeostasis essential for the survival of an individual. However, recent evidence suggests its more widespread roles in behavioral coordination, extending to the social domain. The neuronal and circuit mechanisms behind the LH processing of social information are unknown. Here, we show that the LH represents distinct reward variables for "self" and "other" and is causally involved in shaping socially motivated behavior. During a Pavlovian conditioning procedure incorporating ubiquitous social experiences where rewards to others affect one's motivation, LH cells encoded the subjective value of self-rewards, as well as the likelihood of self- or other-rewards. The other-reward coding was not a general consequence of other's existence, but a specific effect of other's reward availability. Coherent activity with and top-down information flow from the medial prefrontal cortex, a hub of social brain networks, contributed to signal encoding in the LH. Furthermore, deactivation of LH cells eliminated the motivational impact of other-rewards. These results indicate that the LH constitutes a subcortical node in social brain networks and shapes one's motivation by integrating cortically derived, agent-specific reward information.
Keywords: lateral hypothalamus; macaque; other; reward; self.
Copyright © 2020 the Author(s). Published by PNAS.