A considerable amount of volatile organic compounds (VOCs) is emitted, and a vast amount of citric acid residue (CAR) waste is simultaneously produced during citric acid production. Thus, a suitable method realizing the clean production of citric acid must be developed. This study investigated the adsorption of the multicomponent VOCs in a homemade CAR waste-based activated carbon (CAR-AC). A fixed-bed experimental setup was used to explore the adsorption and desorption of single- and multi-component VOCs. Surface adsorption and diffusion molecular models with different defects were built to study the underlying adsorption and diffusion mechanisms of multicomponent VOCs on CAR-AC. The adsorption amount of ethyl acetate in CAR-AC from multicomponent VOCs was 3.04 and 5.91 times higher than those of acetone and acetaldehyde, respectively, and the interaction energy between ethyl acetate and C surfaces was low at -13.41 kcal/mol. During desorption, the most weakly adsorbed acetaldehyde desorbed from the surface of CAR-AC first, followed by acetone and ethyl acetate. The regeneration efficiencies of acetaldehyde, acetone, and ethyl acetate reached 88.77, 85.55, and 91.46 %, respectively, after four adsorption/desorption cycles. We aimed to provide a new strategy to realize the recycle use of CAR and the clean production of citric acid.
Keywords: Adsorption; Citric acid residue waste-based activated carbon; Molecular simulation; Multicomponent volatile organic compounds.
Copyright © 2020 Elsevier B.V. All rights reserved.