A Novel Mechanism Underlying Multi-walled Carbon Nanotube-Triggered Tomato Lateral Root Formation: the Involvement of Nitric Oxide

Nanoscale Res Lett. 2020 Feb 26;15(1):49. doi: 10.1186/s11671-020-3276-4.

Abstract

Abundant studies revealed that multi-walled carbon nanotubes (MWCNTs) are toxic to plants. However, whether or how MWCNTs influence lateral root (LR) formation, which is an important component of the adaptability of the root system to various environmental cues, remains controversial. In this report, we found that MWCNTs could enter into tomato seedling roots. The administration with MWCNTs promoted tomato LR formation in an approximately dose-dependent fashion. Endogenous nitric oxide (NO) production was triggered by MWCNTs, confirmed by Greiss reagent method, electron paramagnetic resonance (EPR), and laser scanning confocal microscopy (LSCM), together with the scavenger of NO. A cause-effect relationship exists between MWCNTs and NO in the induction of LR development, since MWCNT-triggered NO synthesis and LR formation were obviously blocked by the removal of endogenous NO with its scavenger. The activity of NO generating enzyme nitrate reductase (NR) was increased in response to MWCNTs. Tungstate inhibition of NR not only impaired NO production, but also abolished LR formation triggered by MWCNTs. The addition of NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of mammalian nitric oxide synthase (NOS)-like enzyme, failed to influence LR formation. Collectively, we proposed that NO might act as a downstream signaling molecule in MWCNT control of LR development, at least partially via NR.

Keywords: Lateral root; Multi-walled carbon nanotubes; Nitric oxide; Nitric reductase; Tomato.