Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer

Genome Med. 2020 Feb 28;12(1):22. doi: 10.1186/s13073-020-00722-9.

Abstract

Background: T cells exhibit heterogeneous functional states in the tumor microenvironment. Immune checkpoint inhibitors (ICIs) can reinvigorate only the stem cell-like progenitor exhausted T cells, which suggests that inhibiting the exhaustion progress will improve the efficacy of immunotherapy. Thus, regulatory factors promoting T cell exhaustion could serve as potential targets for delaying the process and improving ICI efficacy.

Methods: We analyzed the single-cell transcriptome data derived from human melanoma and non-small cell lung cancer (NSCLC) samples and classified the tumor-infiltrating (TI) CD8+ T cell population based on PDCD1 (PD-1) levels, i.e., PDCD1-high and PDCD1-low cells. Additionally, we identified differentially expressed genes as candidate factors regulating intra-tumoral T cell exhaustion. The co-expression of candidate genes with immune checkpoint (IC) molecules in the TI CD8+ T cells was confirmed by single-cell trajectory and flow cytometry analyses. The loss-of-function effect of the candidate regulator was examined by a cell-based knockdown assay. The clinical effect of the candidate regulator was evaluated based on the overall survival and anti-PD-1 responses.

Results: We retrieved many known factors for regulating T cell exhaustion among the differentially expressed genes between PDCD1-high and PDCD1-low subsets of the TI CD8+ T cells in human melanoma and NSCLC. TOX was the only transcription factor (TF) predicted in both tumor types. TOX levels tend to increase as CD8+ T cells become more exhausted. Flow cytometry analysis revealed a correlation between TOX expression and severity of intra-tumoral T cell exhaustion. TOX knockdown in the human TI CD8+ T cells resulted in downregulation of PD-1, TIM-3, TIGIT, and CTLA-4, which suggests that TOX promotes intra-tumoral T cell exhaustion by upregulating IC proteins in cancer. Finally, the TOX level in the TI T cells was found to be highly predictive of overall survival and anti-PD-1 efficacy in melanoma and NSCLC.

Conclusions: We predicted the regulatory factors involved in T cell exhaustion using single-cell transcriptome profiles of human TI lymphocytes. TOX promoted intra-tumoral CD8+ T cell exhaustion via upregulation of IC molecules. This suggested that TOX inhibition can potentially impede T cell exhaustion and improve ICI efficacy. Additionally, TOX expression in the TI T cells can be used for patient stratification during anti-tumor treatments, including anti-PD-1 immunotherapy.

Keywords: Anti-PD-1 immunotherapy; Immune checkpoint; Intra-tumoral T cell exhaustion; Single-cell RNA sequencing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinoma, Non-Small-Cell Lung / drug therapy
  • Carcinoma, Non-Small-Cell Lung / genetics*
  • Female
  • High Mobility Group Proteins / genetics*
  • High Mobility Group Proteins / metabolism
  • Humans
  • Immune Checkpoint Inhibitors / therapeutic use
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / genetics*
  • Lymphocytes, Tumor-Infiltrating / immunology*
  • Melanoma / drug therapy
  • Melanoma / genetics*
  • Mice
  • Mice, Inbred C57BL
  • Programmed Cell Death 1 Receptor / antagonists & inhibitors
  • Programmed Cell Death 1 Receptor / genetics
  • Programmed Cell Death 1 Receptor / metabolism
  • RNA-Seq
  • Single-Cell Analysis
  • Transcriptome*
  • Tumor Cells, Cultured

Substances

  • High Mobility Group Proteins
  • Immune Checkpoint Inhibitors
  • PDCD1 protein, human
  • Programmed Cell Death 1 Receptor
  • TOX protein, human