Math anxiety (MA) is associated with negative thoughts and emotions when encountering mathematics, often resulting in under-performance on math tasks. One hypothesized mechanism by which MA affects performance is through anxiety-related increases in working memory (WM) load, diverting resources away from mathematical computations. We examined whether this effect is specific to WM or whether the impact of MA extends to an overall depletion of executive function (EF) resources. In this fMRI experiment, we manipulated two separate factors known to impact EF demands-task-switching (TS) and increased WM load-in order to evaluate how MA relates to behavioral performance and neural activity related to mathematical calculations. Relative to a difficult non-math task (analogies), we observed MA-related deficits in math performance and reduced neural activity in a network of regions in the brain associated with arithmetic processing. In response to TS demands, higher levels of math anxiety were associated with a pattern of avoidance and disengagement. When switching from the control task, high math anxiety (HMA) was associated with disengagement from math trials, speeding through these trials, and exhibiting reduced neural activity in regions associated with arithmetic processing. The effects of math anxiety and WM were most pronounced at the lowest levels of WM load. Overall, the results of this study indicate that the effects of MA are broader than previously demonstrated and provide further insight into how EF deficits in MA might impact recruitment of neural resources that are important for successful math computations.
Keywords: Arithmetic; Executive function; Math anxiety; Neuroimaging; Task-switching; Working memory; fMRI.