Non-Hermitian approach for quantum plasmonics

J Chem Phys. 2020 Feb 28;152(8):084105. doi: 10.1063/1.5131762.

Abstract

We examine the limits of applicability of a simple non-Hermitian model for exciton/plasmon interactions in the presence of dissipation and dephasing. The model can be used as an alternative to the more complete Lindblad density matrix approach and is computationally and conceptually simpler. We find that optical spectra in the linear regime can be adequately described by this approach. The model can fail, however, under continuous optical driving in some circumstances. In the case of two quantum dots or excitons interacting with a plasmon, the model can also describe coherences and entanglement qualitatively when both dissipation and dephasing are present and quantitatively in the limit with no dephasing. The approach, within a single excitation manifold, is also applied to assess the role of disorder for 50 quantum dots interacting with a plasmon, where we find that, on average, large enough disorder can help stabilize the ensemble average of the open quantum system toward a dark quasi-steady-state much faster than without disorder. While such single excitation manifold calculations in this size limit can readily be done with either the non-Hermitian or Lindblad forms, as one goes to larger Hilbert space sizes, the computational and storage advantages of the non-Hermitian approach can become more useful.