Background: Cystic fibrosis related diabetes (CFRD) is the most common co-morbidity associated with cystic fibrosis (CF). Individuals with CF demonstrate airway and systemic oxidation compared to people without CF. Furthermore, systemic oxidation precipitated by hyperglycemia in non-CF diabetes has been shown to lead to enhanced inflammation. We hypothesized that the presence of both CF and diabetes in an individual would result in hyperglycemia-induced redox imbalance to an oxidative state. This in turn would result in enhanced production of pro-inflammatory cytokines.
Methods: Systemic redox balance and pro-inflammatory cytokines were measured before and following a standard oral glucose tolerance test in healthy controls (HC) and in CF individuals with a spectrum of glucose homeostasis (i.e. normal glucose tolerant - NGT, prediabetes or frank CFRD).
Results: There were no significant differences between groups in terms of basal or glucose-induced levels of inflammatory markers. However, baseline systemic redox potential was significantly more oxidized in CF subjects with prediabetes and CFRD compared to both CF with NGT and HC. Systemic oxidation was significantly worsened, and to a profound degree, two hours following ingestion of glucose in all CF groups (NGT, prediabetes, and CFRD). The level of redox imbalance at the two hour point was the same in all three CF groups and was not associated with the degree of hyperglycemia. There was a significant correlation between worse systemic oxidation and reduced insulin secretion.
Conclusions: This supports a newly identified abnormality of metabolism in CF - glucose induced redox imbalance to the oxidative state.
Keywords: Cystic fibrosis; Cystic fibrosis-related diabetes; Redox.
Copyright © 2020. Published by Elsevier B.V.