Despite their essential role in chromosome segregation in most eukaryotes, centromeric histones (CenH3s) evolve rapidly and are subject to gene turnover. We previously identified four instances of gene duplication and specialization of Cid, which encodes for the CenH3 in Drosophila. We hypothesized that retention of specialized Cid paralogs could be selectively advantageous to resolve the intralocus conflict that occurs on essential genes like Cid, which are subject to divergent selective pressures to perform multiple functions. We proposed that intralocus conflict could be a widespread phenomenon that drives evolutionary innovation in centromeric proteins. If this were the case, we might expect to find other instances of coretention and specialization of centromeric proteins during animal evolution. Consistent with this hypothesis, we find that most mosquito species encode two CenH3 (mosqCid) genes, mosqCid1 and mosqCid2, which have been coretained for over 150 My. In addition, Aedes species encode a third mosqCid3 gene, which arose from an independent gene duplication of mosqCid1. Like Drosophila Cid paralogs, mosqCid paralogs evolve under different selective constraints and show tissue-specific expression patterns. Analysis of mosqCid N-terminal protein motifs further supports the model that mosqCid paralogs have functionally diverged. Extending our survey to other centromeric proteins, we find that all Anopheles mosquitoes encode two CAL1 paralogs, which are the chaperones that deposit CenH3 proteins at centromeres in Diptera, but a single CENP-C paralog. The ancient coretention of paralogs of centromeric proteins adds further support to the hypothesis that intralocus conflict can drive their coretention and functional specialization.
Keywords: centromeric proteins; gene duplication; intralocus conflict; positive selection.
© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.