Pathogenic DDX3X Mutations Impair RNA Metabolism and Neurogenesis during Fetal Cortical Development

Neuron. 2020 May 6;106(3):404-420.e8. doi: 10.1016/j.neuron.2020.01.042. Epub 2020 Mar 4.

Abstract

De novo germline mutations in the RNA helicase DDX3X account for 1%-3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n = 107), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcomes. We show that Ddx3x controls cortical development by regulating neuron generation. Severe DDX3X missense mutations profoundly disrupt RNA helicase activity, induce ectopic RNA-protein granules in neural progenitors and neurons, and impair translation. Together, these results uncover key mechanisms underlying DDX3X syndrome and highlight aberrant RNA metabolism in the pathogenesis of neurodevelopmental disease.

Keywords: DDX3X; autism; corpus callosum; cortical development; helicase; intellectual disability; polymicrogyria; radial glial progenitor; stress granule; translation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cells, Cultured
  • Cerebral Cortex / abnormalities
  • Cerebral Cortex / embryology
  • Cerebral Cortex / metabolism*
  • DEAD-box RNA Helicases / genetics*
  • Female
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mutation, Missense*
  • Neurodevelopmental Disorders / genetics*
  • Neurodevelopmental Disorders / pathology
  • Neurogenesis*
  • RNA / metabolism

Substances

  • RNA
  • DDX3X protein, human
  • DEAD-box RNA Helicases